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Abstract-The term formal method refers to the use of
techniques from formal logic and discrete math in the
specification, design, and construction of computer systems
and software. These techniques enable the formalization of
software for development and testing so that it may be verified
and validated in a more thorough way. Although not
specifically identified in the literature as a verification and
validation (V&V) formal method technique, neural network
rule extraction fits the basic definition by using techniques
from formal logic to formalize neural network software so that
it may be examined more completely. This paper identifies
several areas where rule extraction can be an effective tool for
the V&V of neural networks.

I. INTRODUCTION

One example of an adaptive neural network used in a
safety- and mission-critical system comes from the
Intelligent Flight Control (IFC) program. This program is a
collaborative effort of the NASA Dryden Flight Research
Center, the NASA Ames Research Center, Boeing Phantom
Works, and the Institute for Scientific Research, Inc. (ISR).
This program seeks to flight-demonstrate, on board an F-1 5
aircraft, a research flight control system that can adapt to
accommodate changing aerodynamic conditions, including
loss of aircraft surfaces or improper surface control. The
first two generations of the IFC system have utilized neural
networks. Since this experiment is flown with a human
pilot, the system is both safety- and mission-critical.

Safety- and mission-critical uses of neural networks are
not limited to flight control systems. Neural networks are
used in vehicle health monitoring, power generation and
transmission control systems, fault detection and
identification in industrial processes, and medical diagnosis
systems [1]. They have the potential for use in space
exploration as part of a decision and control process for
planetary rovers or for improving autonomous systems.
Yet while neural networks are slowly being used in a few
fields requiring high assurance, the limitations associated
with their certification restricts their widespread
acceptance.

Consider the IFC program's use of an adaptive neural
network. Since the flight control system is a research, and
not commercial, system, the certification process to approve
the adaptive neural network is not as rigorous as it would be
for Federal Aviation Administration (FAA) approval.

Existing NASA standards, documentation and testing
procedures, and a physical isolation of the neural network
software from critical aircraft systems have thus far been
enough to qualify as adequate assurance. However, as
these adaptive control systems show promise, it is hoped
such systems can eventually be given greater roles and
eventually adopted in commercial airliners to improve their
safety. The FAA review procedures for adaptive system
use in a civilian aircraft will likely be very stringent and
inhibit their use.

Developers in general of neural network systems have
been cautious about expanding their use into safety- and
mission-critical domains due to the complexities and
uncertainties associated with these complex, adaptive
software systems [2]. Since adaptive neural networks are
beginning to be used within high-assurance systems, like
the IFC program, the NASA Independent Verification and
Validation (IV&V) facility has encouraged research in the
area of neural network V&V to answer the question: How
can we be sure that any system that includes neural network
technology is going to behave in a known, consistent and
correct manner?

Common formal method techniques like model
checking and theorem proving appear unable to completely
address the V&V requirements of neural networks. Model
checking starts from an initial state and repeatedly applies
the transition relation to search all reachable states for a
property violation, while remembering explored states to
avoid looping [3]. Model checking seems less applicable
when the state space is infinite or extremely large, a
possibility with an adaptive neural network. In [4], the idea
of using model checking to verify properties of recurrent
neural networks is discussed. The system presented in that
paper, by the author's own conclusion, was clearly
undecidable and therefore could not be automated.

Theorem proving is the use of logical induction over the
execution steps of the program to prove system
requirements. System requirements are translated into
complex mathematical equations and solved by verification
experts to prove the system is accurate [5]. Like model
checking, theorem proving in the traditional sense does not
seem to be applied to adaptive neural networks. Rather
than an approach where the proof of requirements is done
by logical induction over the structure of the program, the
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approaches for adaptive neural networks deal with proving
convergence and stability. Lyapunov or stochastic methods
can be used and take the place of theorem proving for
neural networks.

A formal approach that seems more suited for neural
network V&V is rule extraction. Rule extraction has been
researched by the neural network scientific community for
at least the past two decades and fits the basic definition for
a formal method because it uses techniques from formal
logic to formalize neural network software so that it may be
examined more completely. In essence, it changes a black
box system into a white box system by translating the
internal knowledge of a neural network into a set of
symbolic rules. These rules have the potential for several
uses in the V&V and certification of neural networks, many
of which are discussed in the following sections.

A. Rule Extraction Overview

By design, neural networks change while training on a
data set. After training, some networks are fixed while
others are allowed to adapt during operation. It is a
challenge to understand how the network will handle
additional input. Testing can give some level of confidence
but may not provide a satisfactory level in safety- or
mission-critical cases.

A solution, rule extraction, is the process of developing
natural language-like syntax that describes the behavior of a
neural network [6]. These techniques can convert the
neural network structure to a prepositional if-then format
offering the possibility of requirements traceability.
Without this representation, it becomes difficult to identify
design aspects of the neural network since the internal
knowledge does not undergo traditional design.

The same techniques used to map rules from the neural
network in rule extraction can also be used in two
additional ways: rule initialization and rule insertion.

Rule initialization [7] is the process of giving a neural
network some pre-system knowledge, possibly through
early training or configuration. A system developer may
have improved confidence if the starting condition of the
neural network is known, which may lead to a constrained
path of adaptation.

Rule insertion [8] is the method of moving symbolic
rules back into a neural network, forcing the knowledge to
incorporate rule modifications or additional rules. A
system developer can use this scheme to exert a condition
or reinforce conditions within an adaptive neural network.
Examples of this include restricting the neural network to a
region of the input space or instructing it to deliberately
forget some data it has already seen.

B. Rule Formats

There are several main rule formats. Rule extraction
algorithms will generate rules of either conjunctive form or

subset selection form, commonly referred to as M-of-N
rules named for the primary rule extraction that makes use
of the form. All rules follow the natural language
syntactical if-then prepositional form.

Conjunctive rules follow the format:

IF condition I AND condition 2 AND condition 3
THEN RESULT

Here the RESULT can be of a binary value
(TRUE/FALSE or YES/NO), a classification value
(RED/WHITE/BLUE), or a real number value (0.18).

The condition can be either discrete (flower is RED,
ORANGE or YELLOW) or continuous (0.25 < diameter <
0.6). The rule extraction algorithm will search through the
structure of the network, and/or the contents of a network's
training data, and narrow down values across each input
looking for the antecedents (conditions) that make up the
rules.

Subset rules, or M-of-N rules, follow the format:

IF (M of the following N antecedents are TRUE)
THEN RESULT

Cravin and Shavlik explain that the M-of-N rule format
provides more concise rule sets in contrast to the potentially
lengthy conjunctive rule format [9]. This can be especially
true when a network uses several input parameters.

C. Rule Extraction Categories

Andrews [7] identifies three categories for rule
extraction procedures: decompositional, pedagogical, and
eclectic.

Decompositional rule extraction involves the extraction
of rules from a network in a neuron-by-neuron series of
steps [10]. This process can be tedious and result in large
and complex descriptions. The drawbacks to
decompositional extractions are time and computational
limitations. The advantages of decompositional techniques
are that they do seem to offer the prospect of generating a
complete set of rules for the neural network.

Pedagogical rule extraction [11] is the extraction of a
network description by treating the entire network as a
black box. In this approach, inputs and outputs are matched
to each other and the rule extraction algorithm is a machine-
learner approach. The decompositional approaches can
produce intermediary rules that are defined for internal
connections of a network, possibly between the input layer
and the first hidden layer. Pedagogical approaches do not
result in these intermediary terms. Pedagogical approaches
can be faster than the decompositional, but they are
somewhat less likely to accurately capture all of the valid
rules describing a network's contents.

The eclectic approach is merely the use of those
techniques that incorporate some of a decompositional
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approach with some of a pedagogical approach. The Rule-
Extraction-As-Learning (REAL) method [9], for example,
is designed such that it can use either technique.

II. RULES FOR V&V

For purposes of V&V, rule extraction is used to model
the knowledge that the neural network has gained while
training or adapting [2, 12]. The rules give insight into the
workings of the neural network and may also be used to
check against basic system requirements. The rules
extracted are generally represented by a set of if-then
statements that may be examined by a human. If the neural
network is fixed after training, then the extracted rules
model the way the neural network will handle other data
that is processed with a confidence level based upon the
rule extraction technique used. If the neural network is a

real-time adaptive neural network, then rule extraction can

be done for one point in time to establish what the system
looks like at that instance. Repeated application of rule
extraction will yield an understanding of the progression of
the network during adaptation.

Rule extraction, rule initialization, and rule insertion can

all be used for V&V purposes throughout the development
life cycle, including the activities of Concept,
Requirements, Design, Implementation, and Testing.

Requirements for adaptive systems are difficult to write
because the system changes during training and operation
and developers may be at a loss as to how to define the
intended system knowledge. If a rule-like syntax is used to
create knowledge requirements, then extracted rules from
the neural network structure can be used for direct
comparison against the requirements.

The extracted rules can also undergo design team
review and analysis to detect improper network behaviors
or missing knowledge. A system analyst might be able to
ascertain novel learning behaviors that had not been
previously recognized. By translating these features into
comprehensible logical statements, the analyst can gain not
only a better understanding of the network's internal
knowledge, but perhaps of the input domain as well.

Rule extraction algorithm uses in several specific areas

of V&V are discussed below. Specific examples showing
rule extraction in V&V can be found in [10].

A. Symbolic Rulesfor Knowledge Requirements

As mentioned before, creating adaptive system
requirements can be difficult. The initial requirements for
an adaptive system may be intentionally incomplete (hence
the need to include an adaptive system). The requirements
should address the two aspects of the system shown in Fig.
1, namely control and knowledge.

The control type requirements are the type that would
typically be generated for any software system. The
knowledge type requirements are more difficult to write and

must fully address the adaptive nature of the system and
how it can evolve over time.

Fig. 1. Requirements for Adaptive Systems

Early in the process of developing adaptive system
requirements, the adaptive behavior must be clearly defined
and documented. Project documents at early stages should
contain high-level goals for the adaptive system behavior
and knowledge. These high-level goals should be stated in
early documents, such as the Project Plan, and then be
traceable through Systems Requirements, Software and
Interface Requirements, and Design documents. The high-
level goals are a representation of the problem to be solved,
possibly in the form of informal descriptions.

From the high-level goals, the system level
requirements can be developed. One approach to
developing requirements related to knowledge in neural
networks, and other adaptive systems, is to model, or

describe the knowledge to be acquired in the form of rules
[13]. Kurd's model is summarized in the next section.
Experts, or those involved in development, can translate
knowledge requirements into symbolic rules labeled as

initial knowledge.
In Fig. 2, the top row shows the typical requirements

developed for the system. The second row of boxes shows
how this initial knowledge can lead to refined knowledge as

the system is trained and then either to intermediate
knowledge given to the adaptive system before deployment

System Software

Requirements Requirements
Control

Knowleg Initeal Kexmde Refined
Kn owledge

Fig. 2. Requirements for Adaptive Systems (Control
and Knowledge)

or final knowledge if the system is fixed. These two rows

represent the difference between the control and knowledge
type requirements.
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B. Rule Insertionfor Hazard Mitigation

Kurd, Kelley, and Austin [13] describe a model that
uses rule initialization, extraction, and insertion and ties
hazard analysis into the development of the neural
networks' knowledge and specifically addresses neural
networks developed for safety-critical applications.

The following information is summarized from [13].
The authors describe a process for developing neural
networks considering the safety criteria that must be
enforced to justify the safety of the neural network in
operation.

Fig. 3 illustrates the development and safety life cycle.
The description of the three main levels and the major
stages in the diagram are described below.

> Requirements Delivered
Initfal Hazard List Safe Platform

Re2Ftsn A ~~~SymbolicRe'''-;Xt / Level

/ Level

\,/ \/ ~~~~Neural LeamiNng
Fig. 3. The Safety Life Cycle for Artificial Neural

Networks 1131

Symbolic Level: This level is associated with the
symbolic information. At this level the gathering and
processing of initial knowledge occurs, as well as
evaluating extracted knowledge gathered post-learning.

Translation Level: This level is where the symbolic
knowledge and the neural architectures are combined or
separated through the use of rule insertion and rule
extraction techniques.

Neural Learning Level: This level uses neural learning
to refine the symbolic knowledge through the training of
the neural network using learning algorithms.

The major stages that outline the process follow the "W"
model in the development life cycle. These stages are
* Determination of requirements: These requirements

describe the problem to be solved in informal terms
and are intentionally incomplete.

* Sub-initial knowledge: Knowledge given by domain
experts during a Preliminary Hazard Identification
(PHI) is translated into logical rules.

* Initial knowledge: The rules that describe the sub-
initial knowledge are converted into symbolic forms
during Functional Hazard Analysis (FHA). These
forms are compatible for translation into the neural
network structure.

* Dynamic learning: Suitable learning algorithms and
training sets are used to refine the initial symbolic
knowledge and add new rules to reduce the error in the

output. This may result in topological changes to the
neural network.

* Refined symbolic knowledge: Knowledge refined by
the learning is extracted using appropriate algorithms.
This results in a new set of rules that can be analyzed.

* Static learning: Refined symbolic knowledge may be
modified by domain experts and re-inserted into the
neural network. This further refines the knowledge in
the neural network but does not allow topological or
architectural changes.

* Knowledge extraction: This can be performed at any
time during static learning to get a modified rule set.

C. Rule Extractionfor Traceability

Neural network rule insertion/extraction can facilitate
requirements traceability of top-level system requirements,
in the form of knowledge requirements, to software
requirements in the form ofmore specific rule bases.

For the neural network knowledge the traceability from
source code to design specifications is more difficult. As
the neural network learns and adapts, the changes that occur
in the internal parameters and structure act like source code
modifications. However, implementation traceability can
be achieved by running rule extraction algorithms from a
trained neural network. The extracted rules can be
compared directly against the design rules, or the extracted
rules can be compared to higher-level software and system
knowledge rules.

The refinement of requirements into software rules and
design rules are presented here and shown in Fig. 4.

Controle

KnowAedge

Fig. 4. Use of Rule Extraction to Develop System
Knowledge

One approach to developing the functional requirement
related to the neural network knowledge may be to model,
or describe the knowledge to be acquired, in the form of
rules. This would allow the neural network requirements to
have a sufficient level of detail so they can be traced
throughout the life cycle documentation. The following
three-step process outlines how this can be achieved.

Step 1. Translate System Specifications dealing with
the function, basic knowledge, and constraints of the neural
network into initial symbolic information in the form of a
rule base for the system. These rules can also include
information from the PHI and the FHA to address what the
neural network is not allowed to do or learn. These initial
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rules should be translated into a format that can be inserted
into the neural network (architecture specific).

Step 2. Refine initial rules and translate them into
software requirements. The process of refining the rules
may include prototyping the neural network, inserting the
initial symbolic knowledge, training the neural network to
allow the rules to adapt to the training sets, and extracting
the rules.

Step 3. Translate refined rules into a format (neural
network architecture specific) that can be inserted into the
neural network.

For projects that lack well defined knowledge
requirements, another method for performing traceability
may be had by using machine learners on training data in
conjunction with rule extraction techniques on trained
neural networks. After the training sets have been
developed to reflect requirements, the neural network is
trained and a set of rules is extracted. Machine-learning
techniques, like a decision tree, are then used on the same
training set to produce a second set of rules. The neural
network extracted rules can be compared against the
machine learning results, enabling a kind of traceability
between design intent (the machine learning rules) and
implementation (the neural network rules.)

D. Rule Extractionfor Testing

Rule extraction can be used in several ways to improve
the testing V&V activities for trained neural networks,
whether they be fixed prior to system usage or just given a
basic set of knowledge before deployment and online
adaptation. Proof of correct operation (and thus correct
learning) can be evidenced through knowledge evaluation
criteria achieved via extracted rules. These rules can be
assessed with their own pass/fail criteria like the number of
rules, complexity of the rules (e.g., number of antecedents),
or rule size (e.g., graphical dimensions - too large/too
small).

Extracted symbolic rules can direct test data generation
and highlight specific areas within an input domain for
testing. An example is the use of symbolic rules to act as a
form of data generation. If the rules are of a mathematical
equation form, randomly generating inputs for the
antecedent part of the rule allows computation of a
consequent. Consequents can be collected, combined with
the randomly generated antecedents, and formed into test
data sets.

System testing can be difficult due to a lack of well-
specified knowledge requirements. If there are only few
system requirements related to knowledge, the system test
design should focus on paying special attention to boundary
data. In this circumstance, extracted symbolic rules
describing the neural network can guide the generation of
data near the system knowledge boundaries.

If the neural network uses real-time V&V in the form of
an operational monitor, the symbolic rules of the neural

network can aid in testing the monitor. The symbolic rules
expose the behavior of the neural network that in turn
facilitates selection of input domain regimes to exercise the
monitor.

Assertion testing is another area within testing that is
possible once rules are extracted. An assertion is a
statement describing a specific condition against the
system. Assertions can be stated that represent system or
software requirements and possible hazards.

Once an assertion is created, it can be checked against
the extracted symbolic rules allowing domain experts the
ability to analyze the rules to identify discrepancies from
the intended design. Testers can use assertions to determine
if certain scenarios like specific input combinations or
possible outputs can occur given the neural network
knowledge.

E. Rule Insertion/Refinementfor System Stability and Fault
Tolerance

Online adaptive neural networks continue to learn and
change during system operation. In some cases, a neural
network may be pre-trained prior to deployment and
additional learning directs the network away from this
original knowledge foundation. If the neural network is to
be initialized with some a priori knowledge that represents
the design specification, then this knowledge can be written
in rule format and techniques used for rule insertion can be
repeated during operation to steer the neural network back
to this basic set of knowledge.

This method provides a sense of system stability
because the network can be allowed to adapt to whatever
the operational environment encounters but the network can
also be reminded of important core knowledge.

Fault recovery could also be accomplished via symbolic
rules like rule refinements, rule re-insertion, or some
combination. If a system is somehow flagged as being
erroneous, basic knowledge can be re-inserted back into the
network to try to recover from the problem. Another option
is the complete reloading of a neural network with
knowledge that is deemed acceptable from a previous
system state or from the bare knowledge given at system
delivery and installation.

F. Rule Extractionfor Operational V& V

A prevalent technique to evaluate correct system
behavior is the use of operational monitors, sometimes
referred to as run-time monitors. These separate software
modules exist as oracles, continuously judging the neural
network performance based upon some pre-defined criteria
established by the system designers. These observations
lead to a system specific decision-making process or
control, especially if a problem is found.

One possible operational monitor design is the real-time
extraction of rules from a neural network for comparison
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against a set of acceptable rule conditions. Allowed
conditions can be based on system requirements, hazard
limits, or perhaps boundary conditions.

The feasibility of this approach is still under
investigation. Rule extraction offline is well documented
and easily accomplished. Rule extraction on a complex,
continually adapting neural network at high computation
speeds remains to be established.

III. CONCLUSIONS

Neural networks lack the ability to explain how they
reached a specific output. This is one of the main reasons
neural networks are not trusted. In most applications users
want to know the reasoning behind the conclusion of the
learning system or expert system.

Rule extraction algorithms provide a means for either
partially or completely decompiling a trained neural
network. This is seen as a promising vehicle for at least
indirectly achieving the required goal of enabling a
comparison to be made between the extracted rules and the
software specifications.

One of the remaining issues with rule extraction is the
lack of tools to assist with extracting and using rules. NaYve
rule extraction could result in the creation of large sets of
rules that are too unwieldy for human comprehension.
Automated tools, like the one mentioned in [10] could
reduce that problem.

Rule extraction from neural networks may have greater
utility for fixed neural networks than for dynamic neural
networks. Fixed neural networks proceed through the steps
of training and testing until they reach an acceptable error
threshold and only then are they used within a system. The
knowledge of the domain is considered embedded inside
the weights and connections of the network. If the network
is no longer encouraged to adapt, the symbolic rules
extracted to describe it can be a useful tool to validate that
network at the time of extraction.

With a dynamic neural network, symbolic rule
extraction may be required at intermediate stages in the
learning. At some intermediate points symbolic rules
would be extracted and passed through an oracle or system
monitor to confirm that the network is still "correct." It
may be that the maximum benefits for dynamic systems lie
with rule insertion or rule initialization.
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