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Automated generation of test cases is a prerequisite for fast testing. Whereas the research
in automated test data generation addressed the creation of individual test points, test
trajectory generation has attracted limited attention. In simple terms, a test trajectory
is defined as a series of data points, with each (possibly multidimensional) point relying
upon the value(s) of previous point(s). Many embedded systems use data trajectories as
inputs, including closed-loop process controllers, robotic manipulators, nuclear monitor-
ing systems, and flight control systems. For these systems, testers can either handcraft
test trajectories, use input trajectories from older versions of the system or, perhaps,
collect test data in a high fidelity system simulator. While these are valid approaches,
they are expensive and time-consuming, especially if the assessment goals require many
tests.

We developed a framework for expanding a small, conventionally developed set of
test trajectories into a large set suitable, for example, for system safety assurance. Statis-

tical regression is the core of this framework. The regression analysis builds a relationship
between controllable independent variables and closely correlated dependent variables,
which represent test trajectories. By perturbing the independent variables, new test
trajectories are generated automatically. Our approach has been applied in the safety
assessment of a fault tolerant flight control system. Linear regression, multiple linear re-
gression, and autoregressive techniques are compared. The performance metrics include
the speed of test generation and the percentage of “acceptable” trajectories, measured
by the domain specific reasonableness checks.

Keywords: Test data generation; software testing; embedded systems; software safety;
process control.
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1. Introduction

Safety assessment requires a large number of test cases to ensure meaningful cov-

erage of the critical sections of the system’s input domain. In the aerospace engi-

neering domain, for example, safety assessment is performed to validate system’s

conformance with safety related rules, called envelopes. The envelopes are usually

derived from previous experience (experience envelopes), and known system con-

straints (system envelopes). If any of the system constraint rules is violated, the

violation must be reported and investigated, potentially leading to dismissal in the

flight qualification process and redesign [1, 14]. Manual development of test cases

needed for this type of system assessment is tedious, time consuming and expensive.

As a result, too few test cases may be available for thorough system assessment. In

these situations, automated test data generators represent an attractive alternative,

provided that building them is feasible.

While the test generator explained here targets embedded flight control sys-

tems, this technique is applicable to most process-control programs. The purpose

of a control system is to maintain specified properties of the outputs of the process,

given some reference values. The architectural solution frequently used for software

implementations of these systems is the control loop paradigm. The controller ex-

ecutes a series of cycles or frames. At the beginning of each frame, it reads inputs

from the sensors, then it performs some computations, and at the end of the frame

it sends commands to the mechanisms. Computations in each frame depend on the

inputs read at the beginning of the frame as well as the values of some internal

variables called history or state variables.

A complication in the automated test generation stems from the fact that in-

puts are not independent snapshots of variable values at the beginning of a frame.

Meaningful inputs consist of the sequences of snapshots. Values of different vari-

ables across the frame boundaries depend on the history of the computation. We call

these sequences input trajectories. Trajectories define system inputs as a function of

time and history [13]. Consequently, software faults manifest themselves as system

failures as the result of the execution on a series of input readings (frame inputs).

Each trajectory corresponds to the notion of a system demand, i.e., the demand is

described by an input trajectory. Demands are selected from the input space. In

the case of reliability testing, the demands are selected according to a probability

distribution over the input space, called the operational profile. This distribution

mimics the operational system usage. Reliability testing assumes that successive

demands are selected independently according to the operational profile. In case of

safety testing, demands are selected such that the coverage of the critical sections

of the system’s input domain inspires confidence that the safety constraints will

not be violated. In practice, institutions such as NASA’s Center for Independent

Verification and Validation perform testing using test designs in which reliability

and safety goals supplement each other.

Whereas research in automated test data generation has addressed the creation
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of individual test points, test trajectory generation has attracted limited attention

in the research community. The only exception that we are aware of is the telecom-

munication domain. There, short input sequences (dial-up options in a phone call)

and relatively small number of system states make Markov chains a feasible method-

ology for describing possible trajectories [17]. Flight control systems require long

input trajectories and undergo numerous state transitions during the execution.

We propose a trajectory generation algorithm for systems where describing input

sequences with Markov models is not feasible.

Our approach is based on the idea of expanding an existing set of test trajecto-

ries. Existing trajectories may have been handcrafted, used by an older version of

the system or, perhaps, collected in a high fidelity system simulator. Without au-

tomation, generating new trajectories would be expensive and/or a time-consuming

activity. Large test sets are usually needed to stress test the new system, for exam-

ple, exercise borders of experience and system envelopes.

We use regressive models to create new trajectories, which are statistically sim-

ilar to the trajectories in the original set, but sufficiently different to represent

additional test cases. This approach violates the statistical independence require-

ment for the selection of demands for reliability testing [8]. However, the technique

is suitable for achieving demand coverage within input subdomains which are in-

teresting from the safety assessment point of view. The use of statistical regres-

sion methods does not imply that this technique is applied in regression testing

(reapplying old tests to a changed system). The purpose of our framework is test

data generation.

The rest of the paper is organized as follows. Section 2 provides the description

of an application that motivated the development of the test trajectory generation

framework. Section 3 gives a general description of our approach to trajectory

generation. Section 4 briefly describes the regression models proposed for use with

the test trajectory generator. Section 5 presents our results from the application of

the approach in the flight control domain. Discussion of these results is presented in

Sec. 6. Section 7 reviews the related work in the general field of test data generation.

A conclusion and a description of future work are provided in Sec. 8.

2. Motivation: Testing of Flight Control Systems

The development of an automated technique for generation of test trajectories for

flight control systems is motivated by the problems we encountered in performing

independent verification and validation on the Day of Launch I-Load Update System

(DOLILU II ). DOLILU II has been developed for the Space Shuttle program to

allow modification of the Shuttle’s first stage guidance commands based on actual

wind conditions measured in hours preceding the launch. This system consists of

the trajectory software required to generate and verify the new I-Loads, to evaluate

wind and trajectory conditions, and to recommend decisions to fly (or not to fly)

with the new I-Loads.
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The DOLILU II system functions as follows. When provided with the wind

and atmospheric data, the executive module invokes the Day of Launch Ascent

Design System (DADS). DADS module generates guidance commands for the day

of launch condition. Guidance commands are passed to the Space Vehicle Dynamic

Simulation (SV DS) Processor. It generates trajectories for reference winds and

atmospheric conditions. Only successfully simulated trajectories are forwarded to

the verification module.

Near real-time verification is the most critical function of the DOLILU II system.

Successfully simulated trajectories and their corresponding I-Loads are verified for

conformance with safety related rules, called envelopes. The envelopes have been

derived from previous experience (experience envelopes), and known system con-

straints (system envelopes). If any of the system constraint rules is violated, the vi-

olation must be reported and the trajectory must be dismissed. The Day of Launch

I-Load Verification Table (DIV DT ) Processor performs trajectory verification, and

it should detect all potentially unsafe flight conditions [1, 14].

The problem with thorough testing for safety violations is the limited number

of readily available trajectories. A relatively small number of available valid atmo-

spheric data set hampers the generation of new trajectories. The second problem is

the efficiency of test data generation. It takes a long time to compute a trajectory

in the described simulation environment, much longer than it takes to test whether

it satisfies about forty predefined safety properties (semi-automatic test oracles are

available). The software verification and validation team wanted to test DIVDT

module with trajectories that challenge the limits of experience and/or safety flight

envelopes. Ideally, test trajectories had to expose hazardous transient system be-

haviors, if any existed. The approach taken was to develop the methodology that

can use existing trajectories, computed from the database of valid field conditions

of an earlier version of the DOLILU system, to generate sufficiently realistic but

dissimilar trajectories for safety testing.

In the next section, we present the test trajectory generation algorithm devel-

oped in response to these requirements. We are not at liberty to discuss its applica-

tion to DOLILU II system. Nevertheless, the case study presented in Sec. 5 discusses

the application of the trajectory generation algorithm in the testing of Sensor Fail-

ure Detection, Identification and Accommodation (SFDIA) scheme. SFDIA is a

module within a piloted aircraft control system.

3. Trajectory Generation Methodology

In the approach proposed in this paper, regressive models are developed to deter-

mine relationships between independent (explanatorya) variables and dependent

variables. The dependent variables, representing a complete description of a test

aIn the rest of the paper, terms independent variables and explanatory variables are used inter-
changeably. No difference should be inferred from the use of these two terms.
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trajectory, are predicted by applying regressive models upon the independent vari-

ables. The independent variables must be controllable and highly correlated to the

dependent variables.

The independent, i.e., explanatory variables must be collected prior to the devel-

opment of the regressive model. Independent variables must be found in the existing

data set. Trajectories are clustered into regions based upon the similarities of the

independent variables. Because of the correlation the independent variables have

with the dependent variables, the dependent variables end up clustered into regions

as well. Clusters usually represent different operational regimes. As an illustration,

the case study presented later considers the flight trajectories of an aircraft. Pilot

(stick) commands are used as independent variables in existing trajectories, the

corresponding angular rates for the given flight are the dependent variables. Conse-

quently, the clusters of trajectories represent different flight maneuvers. In general,

system control inputs are usually good candidates for independent variables.

Regressive models are developed to describe each of these clusters. In order to

generate a needed number of trajectories, the models are applied to perturbations

of the independent variables, thus producing different test trajectories. A visual

representation of the trajectory generation is shown in Fig. 1.

Fig. 1. Mapping of controllable variables to input domain trajectories.

The trajectory generation algorithm can be thought of as a function that trans-

forms one set of inputs, the controlled ones, into a set of trajectories described by

the corresponding dependent variables. The structure of the automated trajectory

generator is shown in Fig. 2.

The algorithm consists of two modules: the model generation and the trajectory

generation. The model generation consists of collecting a set of existing trajectories,

preprocessing the data for use by later modules, clustering the existing trajectories

and developing a regressive model which can best fit each clustered group. Different

regressive models can be used in the model development component, including sim-

ple linear, multiple linear, autoregressive, and non-linear regressive models. These

techniques form the core of the framework.

The trajectory generation module perturbs one or more independent variables
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Fig. 2. Outline of the trajectory generation algorithm.

from the collected set of trajectories to generate new inputs for the regressive

models. The new sets of dependent data generated by the regressive models are

checked against a set of acceptability rules. These rules provide reasonableness

checks, i.e., they decide if the created trajectory is a valid input for the system un-

dergoing the test. The generation section continues to automatically generate new

trajectories, as long as they are needed.

Each of the two building blocks is composed of individual modules that are

designed to work independently of each other, allowing for a “refine and replace”

approach. As the generation approach is improved, it will be refined to aid for

better regressive model fit or for better acceptance rate of the outputs. When the

application domain changes, the individual modules can be replaced by those refined

to work better with the new application.

The rest of this section briefly describes individual modules.

3.1. Collection and preprocessing of existing trajectories

Collection of the existing trajectories can be done from various sources, such as

those collected from actual system usage, retrieved via a system simulator, or from

test cases applied to similar systems in the past. Because regression predicts the

relationship between explanatory and dependent variables, the collected data must

consist of the set of trajectories to be expanded (containing dependent variables),

and some additional controllable (independent) variables that are correlated with

the trajectories. The requirement that the explanatory variables be controllable

allows for their perturbation in the later phases of the algorithm.

Depending upon the data collected, preprocessing of the data may be required

before it can be used by the model generation routine. For the clustering algo-

rithm to work correctly, the data sets should be of the same length in terms of the

number of frames. This can be accomplished, for example, by truncating data sets

to the size of the shortest trajectory. If such a truncation eliminates too much of

useful information, other possibilities include the elimination of shorter data sets

or interpolation of the data to increase the size of shorter sequences. Data and/or
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metrics conversion may also be required if test trajectories have been collected from

more than one type of source with each using different units of measurement. Noise

removal may also be applied at this stage.

3.2. Clustering

By clustering test trajectories into regions representing different operational con-

ditions, regressive models can be defined for each of these regions. Note that such

models define relatively coarse regions of system operation. Each test trajectory

generated by the model serves as a system test or, using the terminology intro-

duced earlier, a system demand.

Clustering techniques fall into one of the following two categories: hierarchical

and non-hierarchical [6]. In non-hierarchical techniques, trajectories are assigned

into k arbitrary clusters until the intragroup variances of each cluster reach a min-

imum. The value of k depends upon a given threshold used to decide the minimum

variance allowed within a cluster. When the addition of another trajectory to a clus-

ter increases the group variance, a new cluster is created. The threshold is chosen

based upon the desired relation of the members of the clusters. Higher thresholds

will certainly allow more trajectories per cluster as lower thresholds increase the

number of clusters.

In hierarchical techniques, the set of trajectories is divided into n desired groups.

Hierarchical techniques may be either agglomerative or divisive. With agglomerative

techniques each trajectory is separated into its own cluster. Neighboring clusters

are merged together based upon distance metrics until the desired n groups are

attained. Divisive techniques start with all trajectories in one cluster. The cluster

is then divided until it reaches the desired number of clusters.

While it can happen that each cluster contains only one trajectory, having more

than one per cluster will allow for better model fitting. Basic steps for the clustering

module in Fig. 2, represented under the name Cluster Independent Variables, consist

of the following:

1. Select independent variables to act as clustering parameters.

2. Transform these parameters, if necessary.

3. Remove parameter outliers, if necessary.

4. Select a distance measure.

5. Perform clustering.

6. Interpret results.

7. Change parameters or modify the clustering technique, if necessary.

8. Repeat steps 1 to 7 until the clustering process generates “satisfactory” classes.

9. Select a representative component for each cluster.

10. Select a representative trajectory for each cluster.

The independent variables that correlate to a trajectory will be the parameters

that guide the clustering process. Clustering does not need to be performed upon
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all of the independent variables, if there are several. Characteristics of important

parameters are their significance to the trajectory, and their amount of variance.

Low variance, for example, will not provide a distinguishing metric between trajec-

tories and will have little impact on clustering.

Clustering allows the elimination of outliers and brings more uniformity to the

trajectories within a cluster. An outlier is defined as a trajectory that lies on the

outer bounds of similar trajectories. Outlier elimination improves the regressive

model fit. The regressive model, then, generates dependent variables that lie closer

to the centroid of the original cluster. Removal or inclusion of outliers will give

different clusters and, consequently, result in different regressive models for each

cluster. This choice has important consequences for the rest of the trajectory gen-

eration approach, and should be made in accordance with the assessment goals of

the specific system.

A standard way of expressing the relationship between trajectories within a

cluster is through a distance metric [4, 6]. The distance metric is calculated over an

n-dimensional space where n represents the number of parameters used to describe

a trajectory. This metric is used to identify which group a trajectory belongs to

by determining how close it is to the group centroid. The distance metric selection

is just as important as the selection of variables used to perform the clustering.

One distance metric may perform well at distinguishing between trajectories in the

cluster, while another distance metric may include all trajectories in a single cluster.

The most commonly used distance metric is Euclidean Distance. Assuming that

a trajectory X is defined by {x1, x2, . . . , xi, . . . , xk}, where xi’s are the values

of variable x at time i, then the distance between two trajectories, x and y, is

given by:

d =

{
k∑
i=1

(xi − yi)2

} 1
2

.

If the trajectories are n-dimensional, the distance metric changes to:

d =

{
k∑
i=1

((x1i − y1i)
2 + (x2i − y2i)

2 + · · ·+ (xni − yni)2)

} 1
2

Other acceptable distance metrics include the Weighted Euclidean Distance and

the Chi-Square Distance [6].

Once the clusters are populated, their centroids must be computed. The cen-

troid is defined as the median value of the independent variable within the cluster.

If multiple parameters are used in the clustering technique, the centroid is mul-

tidimensional. Centroids are needed for selecting the representative component of

each cluster. The representative component is an actual sequence of independent

variables that lies closest to the centroid of the cluster, as determined by the dis-

tance measure. Since independent variables guide the clustering process, the rep-

resentative component consists of independent variables only. The representative



May 29, 2002 11:58 WSPC/117-ijseke 00089

Automated Generation of Test Trajectories for Embedded Flight Control Systems 183

trajectory, on the other hand, consists of the dependent variables that correspond

to the representative component. The representative component and the representa-

tive trajectory become the inputs into the regressive model development. Because

the regressive model will describe the cluster, any other trajectory of dependent

variables chosen instead of the representative trajectory will not produce as good

a fit across the entire cluster.

3.3. Developing the regressive model

The representative component and representative trajectory are composed of mul-

tiple variables. Based on these, different regressive models can be developed. Each

model, linear or nonlinear, originates from a combination of independent-dependent

variable(s) pairs. For example, let us consider a simple linear model. This model

predicts a dependent variable’s behavior based upon a single independent variable.

For a representative trajectory, a simple linear model can be developed for each

pair of independent-dependent variables. By exhaustively trying all the combina-

tions of independent-dependent variables, the algorithm can select the model that

works best for a given dependent variable. This prevents the algorithm from be-

ing “locked” into a specific type of regressive models across all of the dependent

variables.

After a regressive model is constructed for the representative trajectory, it is

applied to the remaining trajectories in the cluster and analyzed. Cross-correlation

analysis looks at the relationship between two sequences of data through a cor-

relation coefficient, r. The stronger the relationship, the higher the value of the

coefficient. The values of r can range from 1.0 down to −1.0 with a perfect match

occurring at 1 and a perfect inverse relationship occurring at −1. The equation for

correlation is given by

r =
ΣXY − ΣXΣY

n√[
ΣX2 − (ΣX)2

n

] [
ΣY 2 − (ΣY )2

n

]
where ΣX is the summation of all data points in X, ΣY is the summation of all

data points in Y , ΣXY is the summation of the product of all data points in X

and Y , and n is the total number of data points.

Improvement of the correlation between the predicted and actual trajectories

can come from applying a smoothing function to the output of the regressive models.

Sometimes the output exhibits sharp peaks and transitions due to the linear process.

A filter, such as local averaging, can smooth regression output and, generally, yield

stronger correlation.

The selection of the best model is based on a cost function. The cost function

may look, for example, at the computational time needed to generate a new trajec-

tory using the model and the accuracy of the model. The accuracy is determined
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from cross-correlations between the predicted output of the model and the depen-

dent variables in the set of existing trajectories, as explained above. An example of

a cost function is given by the following expression:

P = T̄model + e(1.0−cormodel)·10

where Tmodel represents the average time to generate a trajectory using the par-

ticular regressive model, and cormodel represents the average correlation of that

model. While a dimensionless quantity, P is proportional to the cost of applying

the particular regressive model for prediction within the cluster. P is smaller for

regressive models that can generate trajectories faster and for regressive models

that have higher correlation between the predicted and recorded trajectories. The

regressive model with the smallest value of P is, generally, the most suitable one.

This cost function is very subjective and, for any given application, a careful cali-

bration is needed. Calibration should provide a balance between the accuracy and

efficiency, and possibly other desirable factors such as, for example, test diversity,

domain/code coverage, etc.

3.4. Generating new trajectories

The generation of new (different) test trajectories comes from the perturbation of

the independent variables within the cluster. Independent variables of any trajec-

tory within a cluster are available to undergo perturbation. Methods of perturbation

vary and should be chosen based upon the characteristics of the independent vari-

ables. Once perturbed, the new data points are used as inputs into the selected

regressive model producing a new set of dependent variables. If a smoothing func-

tion was applied to the regressive model earlier during the selection module, it

should be applied to the new trajectories too.

One of the most important aspects of the entire approach is to determine if the

newly created trajectory actually qualifies as a valid test case. To select valid tests,

all generated trajectories should be compared against the set of rules describing

acceptable trajectories. These rules must check the dependent variables predicted

by the model, as well as the perturbed independent variables used in the generation.

One of the guidelines in developing acceptability rules can be the distance metric

used in the clustering process. Clustering is based on values of the independent

variables, so the distance between the perturbed values and the centroid of the

cluster can decide if the new (perturbed) independent data still resides within the

cluster. Perturbations that produce independent variables falling outside the cluster

may, for example, be discarded.

Acceptability rules defined to analyze the outputs of regressive model can be

based on the correlation between generated trajectories and the representative tra-

jectory for the cluster undergoing regression. Artificially generated trajectories that

fall outside of an acceptable correlation threshold could be rejected.

A very important set of additional acceptability rules is system specific. These

rules should identify any trajectories that violate the definition of the input domain,
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perhaps by exceeding maximum stress expected to be tolerated by the system. These

rules can look at the slope analysis of the trajectories, compare global maximums

and minimums, etc.

4. A Brief Description of Regressive Models

Regression methods are statistical tools used to study the relationship between a

dependent variable and a set of explanatory (independent) variables. The regression

models are often used for prediction of the value of the dependent variables based

on known values of the explanatory variables. The most commonly used regression

models in the literature are linear models, generalized linear models [27] and autore-

gressive models. Below we describe briefly the linear regression and autoregressive

models, which are used for test trajectory generation.

4.1. Linear regression models

The simplest and widely used regression model is the linear regression model which

assumes that the mean of the dependent variable is a linear function of the ex-

planatory variables. Suppose (x1i, x2i, . . . , xki, yi), i = 1, 2, . . . , n, denote the data

points on the explanatory variables x1, x2, . . . , xk and the dependent variable y.

The statistical model for a multiple linear regression is

yi = β0 + β1x1i + β2x2i + . . .+ βkxki + εi

i = 1, 2, . . . , n. The errors εi are assumed to be independent Gaussian variables

with mean zero and variance σ2. The least square principle is used to find the

estimates of the parameters β0, β1, . . . , βk. Let b0, b1, . . . , bk denote the estimators

of β0, β1, . . . , βk, respectively. These are the solutions that minimize

n∑
i=1

(yi − b0 − b1x1i − . . .− bkxki)2 .

The predicted response for the ith observation is given by

ŷi = b0 + b1x1i + . . .+ bkxki .

The squared multiple correlation coefficient R2 is interpreted as the proportion

of the variability in the response (dependent) variable that is explained by the

explanatory variables in the multiple linear regression model.

The simple linear regression model is the linear regression model when there is

only one explanatory variable. In this case this is simply the best fit straight line (in

the least square sense) to the bivariate data consisting of the paired values of the

explanatory and the response variable. For details of the linear regression models,

refer to [25].
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4.2. Autoregressive models

These statistical models for stationary stochastic processes depend on a finite num-

ber of parameters. They include autoregressive, moving average and autoregressive

moving average models.

Autoregressive models are of the type

yi = a1yi−1 + a2yi−2 + . . .+ apyi−p + ui ,

where ui’s are uncorrelated random variables with zero mean and common variance

σ2
u. p defines the length of the autoregression and it is called the order of the

process which is denoted by AR(p), [26]. The maximum likelihood estimates of

the parameters a1, a2, . . . , ak are obtained by solving the likelihood equations. This

model is often described as being a good approximation of the “peaks” of a process.

The moving average (MA) model is defined by

yi = b0wi + b1wi−1 + . . .+ bqwi−q

where wj ’s are uncorrelated random variables with zero means and common vari-

ance σ2
w and bj ’s are the parameters of the model. q defines the size of the moving

average and the moving average process with size q is denoted by MA(q). The

moving average model is considered a good approximator of a series of data with

deep valleys.

Since both AR and MA models can approximate different parts of a signal,

they are often combined into one model called the autoregressive moving average

(ARMA) model, which attempt to model both the peaks and deep valleys of a series

of a data. The ARMA model is defined by

yi = a1yi−1 + a2yi−2 + . . .+ apyi−p + b0wi + b1wi−1 + . . .+ bqwi−q .

The ARMA model attempts to predict an output yi of a system based on the

previous outputs yi−1, . . . , yi−p and the inputs wi, wi−1, . . . , wi−q. The fitting of

the model involves finding the coefficients a1, a2, . . . , ap, b1, b2, . . . , bq. The deter-

mination of the coefficients of the ARMA model can be done using Yule-Walker

method. It reduces the nonlinear relationships to a set of linear equations, which

can be solved to obtain the coefficients. Other methods for finding the coefficients

include the Batch Least Square (BLS), Recursive Least Square (RLS) and Steiglitz-

McBride method [3, 12].

5. Case Study

A case study chosen for this work is the Sensor Failure Detection, Identification,

and Accommodation (SFDIA) flight control scheme [10, 11]. The SFDIA scheme is

part of an advanced embedded flight control system that uses analytical instead of

a physical redundancy to achieve fault-tolerance. Traditional flight control systems

cope with sensor failures by duplicating, triplicating or, in some instances, quadru-

plicating sensor packages. Problems with these approaches include extra hardware
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costs, power consumption, weight and space considerations. The SFDIA scheme

replaces redundant hardware by implementing a neural network based analytical

scheme that learns the correlation between values provided by different sensors.

In case of a sensor failure, the neural network provides the values that mimic the

expected (learned) value of the failed sensor.

Partial assessment of the SFDIA scheme’s safety is the goal of the case study.

The assessment is conducted by applying flight trajectories as system inputs. Each

of these test trajectories is composed of a sequence of aircraft’s rolling, pitching,

and yawing moments, where a moment is the angular rate of change that an air-

craft experiences during flight. Safety assessment included fault injection tests too.

Since fault injection techniques do not contribute to the topic of this paper, their

description is omitted.

SFDIA test trajectories were generated by our automated system. Pre-existing

flight paths were collected from an advanced flight simulation program, which al-

lowed for recording of multiple variables during flight maneuvers. This subset of

data was then used in the regression modeling. Because of the potential problem

with linear regressive models applied to a typical nonlinear domain (aircraft flight

trajectories), we only considered short flight path segments lasting between 20 and

30 seconds. By limiting the duration of each trajectory, we hoped to maintain as

much linearity as possible. The short duration of flight segments does not seriously

diminish the value of safety assessment, because many critical flight maneuvers can

be represented by short trajectories. The loss of nonlinearity has been addressed by

introducing autoregressive models. The performance of linear and autoregressive

models has been compared and is reported below. Since these models gave satis-

factory results, we did not use nonlinear regressive models in this study. However,

the principles of the trajectory generation framework apply to nonlinear regressive

models as well and their application is a rather straightforward extension.

5.1. Tools, data collection, smoothing, pre-processing

Simulated trajectories were collected using the Aviator Visual Design Simulator

(AVDS), a professional level aircraft flight simulator that allows for recording of

aerodynamic variables including pilot inputs, angular moments, forward velocity,

and directional position.

A total of 17 different flight maneuvers were flown in the simulator for the

data collection step. During the recording of a flight maneuver, the aircraft’s state

was initialized by assigning it a position, rotation, altitude, directional velocities,

and initial throttle input. The flight maneuver would then proceed as some com-

bination of diving, climbing, and banking. Each flight maneuver underwent 10 to

15 simulated repetitions that lasted for approximately 25 seconds. After collection

of all trajectories for a particular maneuver, they underwent a preprocessing step

ensuring that each trajectory had the same number of data points.

In the given problem domain, there exists a close relationship between the pilot
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inputs of aileron deflection, elevator deflection, and rudder deflection to the angular

rates that serve as inputs to the SFDIA. This prompted us to choose the pilot inputs

as explanatory (independent) variables for the models. One other variable recorded

during the simulations was the aircraft’s forward velocity, measured in mach. For-

ward velocity was used as an independent variable because of its relationship to the

pitching moment of the aircraft. The dependent variables for the regressive models

of test trajectories for the SFDIA system were the rolling, pitching, and yawing

moments of the aircraft. One should note that the choice of suitable independent

and dependent variables is specific for the given domain.

Even though we knew that independent variables from the data sets describ-

ing each maneuver would be similar, we still applied a non-hierarchical clustering

to each maneuver. This step eliminated extreme values among the independent

variables and enforced a certain level of inter-cluster uniformity required by the

customer. The representative component and the representative trajectory were se-

lected from the data within the cluster and the regressive models were developed

to investigate the applicability of simple linear, multiple linear, and autoregressive

models for the automated trajectory generation.

5.2. Linear model results

The performance of the linear regressive models built in our experiments is shown

in Figs. 3–7. All the figures represent the same maneuver, denoted as Maneuver

#8.

Figure 3 shows a simple linear regressive model developed for roll rate prediction

from flight Maneuver 8. By using aileron deflection as an input to the model, the

model reached the correlation of 91%, whereas using mach as an input to the model

only achieved the correlation of 37.4%.

Fig. 3. Roll rate simple linear models.
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Fig. 4. Roll rate multiple linear models.

Fig. 5. Pitch rate simple linear models.

Figure 4 shows how the regressive model correlation can change by adding a

level of complexity to the simple linear model and using two independent variables

instead of one. The two-variable multiple linear regression using the aileron and

elevator deflections as inputs has a correlation to the actual dependent variable of

91.6%. If aileron and rudder or aileron and mach deflections are used, the correlation

is about 90.6%.

Sample linear regressive models from the pitch rate model development are

shown in Figs. 5 and 6. Elevator deflection as an independent variable for a simple

linear model resulted in a correlation of 97.6% of the actual value of pitch rate.

Rudder deflection input achieved a 92.6% correlation. The addition of a second
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Fig. 6. Pitch rate multiple linear models.

Fig. 7. Yaw rate multiple linear models.

independent variable to the model improved the prediction even further. In Fig. 6,

when both elevator and rudder deflection are used, the model correlates 99.14% to

the actual pitch rate. The other two-variable combinations perform just as well.

Yaw rate prediction is shown only for a two-variable model in Fig. 7. The linear

models had a more difficult time fitting to the yawing moment trajectories. This is

expected, due to the mathematical properties of the yawing moment. The best cor-

relation came from the rudder and elevator deflection combination of independent

variables, achieving the correlation of 94.19%.
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Fig. 8. Pitch rate ARMA models.

Fig. 9. Roll rate ARMA models.

5.3. ARMA model results

Examples of the performance of the ARMA models built in our experiments are

shown in Figs. 8 and 9.

Using the same data set from flight maneuver number eight, ARMA models

were developed for prediction of the same dependent variables as in the linear

models. Figure 8 depicts an ARMA model result for pitching moment. In this case,

the ARMA model achieves a 96.23% correlation with the actual pitching moment

using the elevator deflection as an independent variable. The high correlation in this
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specific case is somewhat misleading, since there is a significant difference between

the actual pitch rate and the one predicted by an ARMA model. The cause for this

discrepancy and its remedy are discussed in Sec. 6. Generally speaking, using an

ARMA model on a highly linear moment, such as the pitch rate, is not desirable.

Figure 9 plots the actual representative trajectory rolling moment from flight

maneuver eight against the predicted ARMA model. Correlation between these two

is 99.31% and the plot demonstrates the close fitting achievable via the autoregres-

sive technique. Some non-linearity is detectable between 22.5 and 27.5 seconds.

Overall, the ARMA model is able to capture the rolling moment well.

Perhaps the best results come from the ARMA models when applied to predic-

tion of the yawing moment. As seen in Fig. 10, the ARMA model is able to predict

the representative yawing moment with a correlation of 99.92%. The actual data is

matched very well, outperforming any of the results seen by the linear models.

Fig. 10. Yaw rate ARMA Model.

5.4. Trajectory acceptance rules

Two sets of acceptability rules were developed for the SFDIA trajectory genera-

tion. The first set tests the acceptability of the pilot inputs. The second set was

developed to test the reasonableness of the generated roll, pitch, and yaw rates.

The acceptability tests applied to the perturbed pilot inputs check the deflections

to determine if they exceed the acceptable range which an aircraft might experience

during normal flight. The test is defined by an upper and lower limit bound on the

pilot’s deflection, as shown below:

−0.053 rad ≤ pilot deflection ≤ 0.0053 rad
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If a perturbed input exceeds the threshold, it is discarded from the set of test cases.

The choice to use 0.053 radians is based upon typical deflections of surface areas in

commercial jetliners.

The second acceptability test checks if the perturbed deflections remain within

the clusters determined earlier. By applying the Euclidean distance metric, the dis-

tance of each of the perturbed deflections from the cluster centroid is calculated.

If a distance exceeded the intra-group variance threshold, then that particular per-

turbed deflection was eliminated.

The second set of acceptability rules applies to the generated trajectories. A

limit is placed upon the degree in which a generated trajectory differs from its

corresponding actual angular rate. Essentially, if a generated trajectory falls below

an 85% correlation with a trajectory from the original collected dependent variables,

that trajectory is rejected.

Table 1 shows the percentages of acceptable generated trajectories for roll, pitch,

and yaw rate predictions with each maneuver having its own regressive model de-

veloped as either a simple linear or two-variable multiple linear regressive model.

Table 1. Percentage of acceptable trajec-
tories for linear models.

Maneuver Roll% Pitch% Yaw%

1 70.0 90.0 60.71
2 10.0 94.0 66.0
3 91.11 91.11 11.11
4 93.75 93.75 0.0
5 93.75 93.75 62.5
6 80.0 92.5 0.0
7 0.0 85.0 2.5
8 93.75 93.75 93.75
9 90.0 90.0 84.0
10 92.5 92.5 0.0
11 86.25 86.25 17.5
12 61.25 86.25 1.25
13 71.25 93.75 93.75
14 0.0 91.25 60.0
15 78.75 78.75 72.5
16 68.75 75.0 80.0
17 31.25 93.75 12.5

Because each of the generated angular rates are linked to a particular maneuver,

the lowest acceptability rate was the limiting factor for some maneuvers. For ex-

ample, see Maneuvers 4 and 6 in Table 1. Even though there were high acceptable

percentages of roll and pitch rate generation, no acceptable yaw rate generation oc-

curred, leaving no new tests for that maneuver. Only a few maneuvers experienced

poor results, while most others had very high acceptance rates, as defined by the

specific acceptability rules.
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Table 2. Percentage of acceptable trajec-

tories for ARMA models.

Maneuver Roll% Pitch% Yaw%

1 39.29 90.0 67.86
2 53.33 96.67 96.67
3 91.11 91.11 91.11
4 81.25 93.75 25.0
5 93.75 93.75 93.75
6 12.5 0.0 0.0
7 12.5 85.0 23.75
8 93.75 93.75 93.75
9 90.0 90.0 90.0
10 92.5 80.0 92.5
11 86.25 25.0 86.25
12 0.0 12.50 12.50
13 93.75 93.75 93.75
14 18.75 91.25 60.0
15 62.5 78.75 78.75
16 81.25 75.0 87.5
17 93.75 75.0 25.0

The percentage of acceptable trajectories generated by ARMA models is shown

in Table 2.

6. Discussion

In general the ARMA models performed well in predicting the behavior of the

rolling and yawing moments while the linear models performed better at predicting

the pitching moments. Much of this has to do with the non-linear relationships

among the aerodynamic properties of lateral-directional flying.

6.1. Evaluation of the regressive models

Use of the regressive models newly generated trajectories achieved acceptance rates

of as high as 90%. It is important to point out that the type of flight maneuvers

considered also influenced the individual successes of the different regressive mod-

els. Many of the maneuvers selected were chosen because they represented common

maneuvers that a commercial jetliner may experience. These included simple bank-

ing maneuvers, rolling maneuvers, gentle climbing and diving. It is well established

in aerospace literature that many of these maneuvers can be simplified into single-

input-single-output (SISO) systems where the aircraft’s angular momentum is only

affected by a single deflection or input. For these maneuvers, ARMA models had

high success rates because they approximate SISO systems well.

Linear models performed generally well for both pitching moment and rolling

moment prediction. Correlations from these models averaged around 95% for roll

rate and 90% for pitch rate. However, the linear models, both simple and multiple,

failed at predicting yawing moments. This is probably due to the highly non-linear
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nature of the yawing moments collected from the simulator.

Some of the prediction correlation results for the linear models were very high,

above 90% correlation, when visual inspection showed that the model did not closely

fit the actual data. This problem is visible in Fig. 8. A cause for this was the use

of the Matlab function xcor and the manner in which it normalizes the correlation

computation. This function works by calculating the correlation between two sep-

arate data sequences for a range of time lags from −N to N where N is the size of

the data set. As was the case with all of our cross-correlations between the actual

trajectory and the predicted trajectory, our maximum cross-correlation occurred at

a lag of zero and progressively got worse for larger lags in either direction. We then

used the normalization feature for xcor, which ensures that the cross-correlations

returned fall between the values of −1.0 and +1.0. The small cross-correlation,

which occurred at larger lags, caused the results around zero lag to reach higher

percentages.

In addition to accuracy, another important factor in evaluating a trajectory gen-

eration algorithm is the speed of trajectory generation. The use of ARMA models,

for example, showed that they could generate five thousand new test trajectories

in the time required to collect one simulated test trajectory. ARMA model compu-

tation time was roughly half the time required by the linear model computation.

A factor in this could be the usage of provided Matlab functions to compute au-

toregression, while we wrote our own functions to compute and handle linear model

generation. Nevertheless, the generation efficiency of the automated framework sur-

passed the traditional approach by more then the three orders of magnitude.

6.2. Evaluation of the acceptability rules

Prior to the use of an artificially generated trajectory for the system test, the

trajectory needs to pass a “sanity check”, i.e., it must represent a realistic flight

condition. This realism is checked by acceptability rules. The development of the

domain specific acceptability rules is crucial as these indicate the true success or

failure of the algorithm in generating new trajectories.

The first acceptability rule analyzed the perturbed independent variables to

ensure that values for these variables did not violate acceptable ranges that can

actually occur for the variables. For commercial jetliners there are upper and lower

limits placed upon the deflections that a pilot can give for a surface area, which

ensure safe and comfortable travel for passengers. In the case study, this rule elim-

inated very few of the perturbed independent variables.

The second acceptability rule eliminated perturbed independent variables that

would violate the inter-group variance thresholds. That is, if the perturbed in-

dependent variables were not within the clustering threshold, they were deemed

outside of the cluster model and unacceptable. This rule eliminated around 2% of

the perturbed independent variables.

The third acceptability rule applied a test against new dependent variables that
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the regressive models generated. One of our requirements for acceptable trajectories

was that newly generated trajectories needed to be different, but within a close

correlation to the original representative trajectory that was used to build the

model. This would limit the input domain coverage for generated trajectories from

the developed regressive model, but it increased the “trustworthiness” that those

trajectories were valid data sequences that could be used as a test input into the

system. This rule had the highest rejection rates, eliminating 8% of rolling moment

test trajectories, 4% of pitching moment trajectories, and 7% of yawing moment

trajectories.

7. Related Work

A test data generator is a tool that assists a user in the generation of test data [2].

The purpose of the tool is to reduce the testing time by allowing a system developer

to generate large volumes of test data [15].

Manual test data generation includes cause-effect graphing, driven by coverage

methods, equivalence partition, random user inputs, and use case analysis [15].

Cause-effect graphing is a graphical technique that maps the input domain to the

output domain via true or false relationships. Driven-by-coverage methods generate

test data with a purpose of increasing one of the coverage measures. Equivalence

partitioning divides up the input domain into partitions and chooses test cases

for each partition. Random keyboard pounding is a process where testers use the

system by giving it as many random inputs as they can to determine problems. Use

case analysis is a process where use cases are easily transformed into test cases.

Automatic test data generation can help reduce time and any subjective biases

a developer might have in creating a system test. Automatic test data generation

includes data specification systems, pathwise test data generators, random test data

generators, and specification based test generation [2, 5]. Data specification systems

generate test data from a language that describes the input domain. The apparent

weakness of this approach is the ability of a system designer to adequately describe

the input domain, because this may be as difficult as the system requirements

definition. Pathwise test data generators generate test data that follow execution

paths of the program. While this type of testing is suitable for achieving high path

coverage, it is not useful for safety assessment based on the extensive coverage of

the critical sections of the input domain. Random test data generators are growing

in importance, but their randomness is usually confined to the variations of “im-

portant” use cases or scenarios [16]. Specification based test data generation uses

grammatical rules on the system specifications to generate test cases.

7.1. Random test generators

Random test generators are a common technique to generate large amounts of

test data. Random testing uses tests without requiring a priori knowledge of the

structure of the program being tested. The entire input domain of the system is
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considered and the test generator randomly selects inputs from this domain [3]. The

need for such systems has been recognized in the literature and various strategies

to enhance the effectiveness of test data generation have been suggested [3, 18–

22]. Uniform random test data generation is simple but cannot handle non-uniform

operational profiles, which are more frequently encountered in real applications

[18, 3]. Some recent research efforts that have considered constrained test data

generation have focused on linear constraints expressed in linear algebra [19], in

relational algebra [23], or in strictly boolean expressions [21].

For generation of single value data, random test generators provide an adequate

solution. However, data sequences cannot be generated. A randomly generated value

is unrelated with the next randomly generated value, except for a possible relation-

ship due to the imperfection of the random number generator.

7.2. Pathwise test data generators

Pathwise test generators are a common generation technique. A pathwise generator

looks at creating test data that will exercise a certain path through the software

system [2]. The path reflects the data values throughout the software system as it

passes from input to an output.

There are four steps to a pathwise generator: constructing a graph representation

of the program, selecting a path for a test to traverse, symbolically executing that

path, and generating test data which will evaluate that path. Tests are selected

from the input domain to cover as many of the program paths as desired. The

newest technique for test data generation from a program model is based on model

checking [24].

Once a path is chosen in the graph, this path is symbolically executed. Sym-

bolic execution identifies path predicates that define regions of the input space.

Path predicates are represented by symbolic expressions. The result of the sym-

bolic execution will be an equation in terms of input variables, which, if satisfied,

will cause the (symbolic) path to be executed. When the program is to be tested,

a test data generator chooses data from within each of the input domain regions.

Tests are then checked for correctness either by the test analyst or by a specially de-

signed testing oracle. Sometimes a value cannot be found within the input regions.

This indicates that either the path is unreachable or the region was not properly

formed. For closed-loop control systems, pathwise testing may not be meaningful.

Data might be generated to exercise a path in the system, but a snapshot of data

points may not provide sufficient excitation to reveal a safety related fault in a

control loop system.

In recent years, several approaches based on the combinatorial automatic test

data generation have been unveiled [7, 28, 29]. These tools generate test sequences

from system scenario descriptions or some other means of system specification. For

example, in [29] a constrained random generator interacts with software at every

execution cycle and computes the set of all input values specifying current envi-
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ronment specification. This approach is, in principle, applicable to flight control

systems. Nevertheless, generated sequences are not trajectories, since at the begin-

ning of every computational cycle inputs are selected such that they are feasible for

the given state of the system, regardless of the input history or state variables. We

also doubt that these systems are robust enough to generate tests efficiently and

appropriately for the goals of safety assurance.

8. Summary

This paper demonstrates one of the first attempts to automatically generate test

trajectories, needed for the assessment of process control systems. There is ample

evidence that such a tool is needed in practice. Prior to fielding a system (or at any

point early in the development life cycle), only a few trajectories may be available

for assessment. Enlarging the set of test trajectories is expensive and tedious if a

system tester has no automated support.

We described the complete framework for trajectory generation, starting with

the collection of preliminary test set through conventional means (regressive tests,

simulation), and ending with an acceptance test of the artificially generated trajec-

tory. We evaluated our system in a realistic case study, in which a prototype of a

flight control system was undergoing safety assessment. The results show that the

trajectory generation algorithm is able to produce new test trajectories faster and

cheaper than they could be simulated or collected from actual usage. Currently,

our flight trajectory generation algorithm is being considered for inclusion into the

automated testing methodology for NASA’s Intelligent Flight Control program.

Our study was inspired and guided by the current state of practice of indepen-

dent verification and validation of software systems as practised by NASA. But it

is important to note that while we applied and evaluated test trajectory generation

methodology on an embedded flight control system, its intended usage is not lim-

ited to aerospace engineering domain. Most software applications in control systems

need to maintain the values of state variables across the boundaries of a single run

of the control loop. What differs across different domains is the methodology that

evaluates the success criteria for testing in general and test trajectory generation

in particular. Therefore, (sub)domain, feature and/or test coverage analysis will

certainly need to be added to accuracy and efficiency considerations in some of the

application domains. The described test trajectory generation framework is flexible

enough to address the specifics of various application environments.

Areas of further study include looking at the cost function used to select the best

regressive model and modifying it to include additional calculations such as least

square errors between the actual and predicted trajectories. Another alternative is

replacing the correlation computation with a simple Euclidean distance metric. So

far we did not attempt to measure the “goodness” of the generated test trajectories

with respect to their ability to exercise specific flight safety features. This will lead

to the further refinement and addition to the acceptability rules as applied to the
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SFDIA scheme. Last but not least, sophisticated nonlinear regressive models will

be constructed to attempt better yaw rate prediction.
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